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Summary. A genetic model with either 64 or 1,600 un- 
linked biallelic loci and complete dominance was used to 
study prediction of additive and dominance effects in 
selected or unselected populations with inbreeding. For 
each locus the initial frequency of the favourable allele 
was 0.2, 0.5, or 0.8 in different alternatives, while the 
initial narrow-sense heritability was fixed at 0.30. A pop- 
ulation of size 40 (20 males and 20 females) was simulat- 
ed 1,000 times for five generations. In each generation 5 
males and 10 or 20 females were mated, with each mating 
producing four or two offspring, respectively. Breeding 
individuals were selected randomly, on own phenotypic 
performance or such yielding increased inbreeding levels 
in subsequent generations. A statistical model containing 
individual additive and dominance effects but ignoring 
changes in mean and genetic covariances associated with 
dominance due to inbreeding resulted in significantly bi- 
ased predictions of both effects in generations with in- 
breeding. Bias, assessed as the average difference be- 
tween predicted and simulated genetic effects in each 
generation, increased almost linearly with the inbreeding 
coefficient. In a second statistical model the average ef- 
fect of inbreeding on the mean was accounted for by a 
regression of phenotypic value on the inbreeding coeffi- 
cient. The total dominance effect of an individual in that 
case was the sum of the average effect of inbreeding and 
an individual effect of dominance. Despite a high mean 
inbreeding coefficient (up to 0.35), predictions of addi- 
tive and dominance effects obtained with this model were 
empirically unbiased for each initial frequency in the 
absence of selection and 64 unlinked loci. With pheno- 
typic selection of 5 males and only 10 females in each 
generation and 64 loci, however, predictions of additive 
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and dominance effects were significantly biased. Ob- 
served biases disappeared with 1,600 loci for allelic fre- 
quencies at 0.2 and 0.5. Bias was due to a considerable 
change in allelic frequency with phenotypic selection. 
Ignoring both the covariance between additive and dom- 
inance effects with inbreeding and the change in domi- 
nance variance due to inbreeding did not significantly 
bias prediction of additive and dominance effects in se- 
lected or unselected populations with inbreeding. 

Key words: Finite-locus model - Dominance - Inbreed- 
ing - Selection 

Introduction 

Mixed model methodology is used widely in animal 
breeding. In most applications, however, only additive 
genetic effects are considered. The accurate prediction of 
non-additive effects may be important in for example, 
the accurate prediction of additive genetic merit, selec- 
tion of clones in plant or animal breeding, or selection of 
mates based on their specific combining ability (Allaire 
and Henderson 1965; DeStefano and Hoeschele 1992). 
Non-additive genetic effects result from interactions be- 
tween genes at the same locus (dominance) or at different 
loci (epistasis). In this study only dominance is consid- 
ered. 

In noninbred populations, the prediction of domi- 
nance effects is straightforward but computationally de- 
manding (Henderson 1985). The dominance relationship 
matrix can be computed from the additive genetic rela- 
tionship matrix, inverted, and then applied in mixed 
model equations. Hoeschele and VanRaden (1991) pre- 
sented a method to compute directly the inverse of the 
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dominance relationship matrix in noninbred popula- 
tions. The prediction of  additive and dominance effects 
in noninbred populations requires knowledge of  the ad- 
ditive and dominance variance in the base population. 
Intense selection in finite animal breeding populations 
will increase average inbreeding levels. Inbreeding com- 
plicates the genetic covariance structure of  the popula- 
tion. Computat ion of  the genetic covariance between two 
relatives with arbitrary levels of  inbreeding requires 
knowledge of  three extra genetic parameters: (1) the sum 
over loci of  the squared complete inbreeding depressions, 
(2) the dominance variance in the completely inbred pop- 
ulation, and (3) the covariance between additive and 
dominance effects in the completely inbred population 
(e.g. Harris 1964; Jacquard 1974). In addition, inbreed- 
ing may reduce the mean phenotypic value of  the popu- 
lation, referred to as inbreeding depression (Falconer 
1989). 

Two methods for predicting additive and dominance 
effects in populations with inbreeding have been suggest- 
ed. One method accounts for the average effect of  in- 
breeding on the mean by including the inbreeding coeffi- 
cient as a covariate in the model while ignoring the 
reduction of  base dominance variance due to inbreeding, 
increase of  dominance variance of  completely inbred in- 
dividuals, and the covariance between additive and dom- 
inance effects with inbreeding (Kennedy et al. 1988). An 
individual's total dominance effect is estimated as the 
sum of the average effect of  inbreeding on the mean and 
an individual effect of  dominance. This method was ex- 
amined for populations with an average inbreeding coef- 
ficient of  at most 0.08, selection of  the 25 % phenotypical- 
ly best males and all females, and for initial allelic 
frequencies at 0.5 and 0.8 (Uimari and Kennedy 1990). In 
these situations, predictions of  additive and dominance 
effects were empirically unbiased. 

The other method for predicting additive and domi- 
nance effects in populations with inbreeding accounts for 
all of  the changes in mean and genetic covariance with 
inbreeding (Smith and M/iki-Tanila 1990). The exact ge- 
netic covariance matrix between additive effects of  
gametes and dominance effects of  gamete pairs existing 
in animals and other non-existing gamete pairs, the so- 
called extended genomic matrix (E matrix), is formed 
using tabular rules. To predict additive effects of  gametes 
and dominance effects of  (non)-existing gamete pairs, the 
inverse of  E is required. Matrix E is singular, however, 
for only two alleles per locus. The prediction of  additive 
and dominance effects via direct inversion of  E is not 
suitable for genetic models with biallelic loci (Smith and 
M/iki-Tanila 1990), which was the model of  interest in the 
present study. Properties of  the E matrix and the possibil- 
ity of  predicting individual additive and dominance ef- 
fects by extracting only those elements that involve ani- 
mals deserves further study. 

In this paper, the impact of  level of  inbreeding and 
intensity of  selection on prediction of  additive and dom- 
inance effects will be studied for different alMic frequen- 
cies using the approximate method proposed by Kennedy 
et al. (1988). Simulation at the individual locus level was 
used to compare predicted additive and dominance 
effects with corresponding simulated values. Strictly ad- 
ditive genetic models were studied to compare the finite- 
locus model with the infinitesimal model. 

Methods 

Simulation 

This study followed the simulation strategy of Uimari and 
Kennedy (1990). The simulated trait was affected by a finite 
number (64 or 1,600) of unlinked, biallelic loci, each with an 
equal effect, and was measured on males and females. At each 
locus the genotypic value of the heterozygote was either interme- 
diate or equal to that of the favourable homozygote. An individ- 
ual's genetic value was the sum of its genetic values for all loci 
affecting the trait. A normally distributed environmental devia- 
tion was added to each genotypic value such that the narrow- 
sense heritability was 0.30 in the base generation. 

Each simulated population included five generations. The 
initial generation contained 20 males and 20 females whose 
genes were randomly chosen from a base population in Hardy- 
Weinberg proportions and gametic phase equilibrium. For each 
locus the frequency of the favourable allele (p) in the base pop- 
ulation was 0.2, 0.5, or 0.8 in different simulated populations. 
Corresponding additive and dominance variances in the nonin- 
bred base population at the animal level equalled: 52.43 and 6.55 
for p=0.2, 32 and 16 for p=0.5, and 3.28 and 6.55 for p=0.8. 
To produce progeny, 5 males and 10 or 20 females were mated, 
with each mating resulting in two or one offspring of each sex, 
respectively. Breeding individuals were selected randomly, on 
own phenotypic performance or such yielding increased in- 
breeding levels in subsequent generations. For those selected at 
random or on their own performance, males and females were 
also mated randomly. Increased inbreeding levels in subsequent 
generations were obtained by maximizing the number of mat- 
ings between closely related individuals (e.g. full sibs), denoted 
by full-sib mating. Full-sib mating was studied to examine the 
effect of inbreeding on prediction of additive and dominance 
effects in the absence of selection. Different intensities of female 
selection (proportion selected of 100% versus 50%) were used to 
analyze its effect on prediction of additive and dominance ef- 
fects. 

For each alternative 1,000 replicates were examined. 

Evaluation 

At the end of the last generation phenotypic information on 
individuals in all five generations was used to estimate additive 
and dominance effects using the known additive and dominance 
variance of the base population. Statistical models with and 
without a regression on inbreeding were used to examine the 
average effect of inbreeding on the mean: 

y i=#+a i+d i+e i  (a) 

y i=#+  ai+ di+ bFi+el (b) 

where Yi is the phenotypic value of animal i, # is the base popu- 
lation mean, a i is the additive effect of animal i, di is the domi- 
nance effect of animal i, b is the regression of the phenotypic 
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value (Yi) on the inbreeding coefficient (Fi), and e i is the random 
error term of animal i. For the model with regression, a domi- 
nance effect corrected for the average effect of inbreeding (d*) 
was predicted as: 

a t =a,+gF, (1) 
The regression of phenotypic value on the inbreeding coefficient 
will account for the average effect of inbreeding on the mean. 
For a one-locus model with two alleles, the mean of an unse- 
lected population with an average inbreeding coefficient F (#F), 
ignoring genetic drift, can be written as (Kempthorne 1957): 

# v = ( p 2 + p q F )  �9 a+(2pq(1 - -F) ) .  d + ( q 2 + p q F )  �9 - a  (2) 
= # R - 2 p q d F  = # R + b F  

Where #R is the mean in the noninbred random mating popula- 
tion (a ( p -  q) + 2pqd); p, q is the frequency of the favourable 
and unfavourable allele, respectively; a, d, - a  is the genotypic 
value of the favourable homozygote, the heterozygote and the 
unfavourable homozygote, respectively; F is the average in- 
breeding coefficient in the population; b is the regression coeffi- 
dent, which equals the complete inbreeding depression or 
#~-#R= - 2  pqd, where #1 is the mean in the completely inbred 
population (a ( p -  q)). 

For a model with nl unlinked, biallelic loci in gametic phase 
equilibrium, the theoretical value of b equals: 

nl 

b = - 2 5Z Pk qk dk (3) 
k = l  

Mixed model equations used to obtain estimates of additive 
and dominance effects require the inverse of the additive genetic 
(A- 1) and the dominance genetic (D- 1) relationship matrix. The 
effect of inbreeding was accounted for in the construction of 
A-1 (Henderson 1975). Matrix D was computed from elements 
of A ignoring inbreeding, and inverted (Henderson 1985). Ma- 
trix D-1  was also obtained directly (Hoeschele and VanRaden 
1991). Results from each strategy were almost identical, but in 
the present simulations obtaining D-1 directly required more 
CPU time. As the number of animals increases, however, ob- 
taining D - 1 directly will be more efficient than inverting D. To 
obtain estimates of additive and dominance effects the mixed 
model equations were solved using iteration on the data (Schaef- 
fer and Kennedy 1986). Solutions were considered stable when 
the convergence criterion which equals the sum of squares of 
differences in solutions between iterations divided by the sum of 
squares of the most recent solutions, was less than 10-lo 

Estimated additive and dominance effects were compared to 
corresponding simulated effects. Bias was assessed as the aver- 
age difference between predicted individual additive and domi- 
nance effects and corresponding simulated effects in each gener- 
ation. Biases observed in subsequent generations varying in 
average inbreeding level or in simulated populations differing in 
female selection intensity were compared to examine the average 
effect of selection and/or inbreeding on prediction of genetic 
effects. An individual's simulated additive (or dominance) effect 
was the sum of the simulated additive (or dominance) effects for 
all loci affecting the trait, which were computed relative to the 
random mating noninbred base population (Falconer 1989). 
This is consistent with the infinitesimal model, which assumes 
negligible changes in alMic frequency due to selection. Simu- 
lated additive or dominance variances in each generation were 
calculated directly as: 

2 1 2 
agt = ~ (g't gt -- gt ) (4) 

where gt is a vector of simulated additive or dominance effects 
for n animals in generation t, respectively. 

Infinitesimal model versus the finite-locus model 

Estimated additive and dominance effects were computed as- 
suming an infinitesimal model. This model supposes an almost 
infinite number of unlinked loci, each with a small effect, which 
results in a negligible change in allelic frequency due to selection 
(Bulmer 1980). The number of loci in the finite-locus model 
must be large enough to assess the properties of the infinitesimal 
model, especially stability of allelic frequencies under selection. 
For a given genetic variance, the expected change in frequency 
of an allele at one locus, after one generation of selection, is 
inversely proportional to the square root of the number of loci 
of equal effect (Crow and Kimura 1970). As in Uimari and 
Kennedy (1990), a genetic model with 64 unlinked loci was 
examined. The expected initial increase in frequency of the fa- 
vourable allele for an initial frequency of 0.5 equals 5%, with 
phenotypic selection of 5 males and 10 females in each genera- 
tion. Reducing this expected increase in allelic frequency to 
about 1% requires 1,600 loci. An additional genetic model with 
1,600 loci was considered, therefore, in which the total genetic 
variance was unchanged. Consequently, additive and domi- 
nance variances at the animal level and the covariance between 
additive and dominance effects arising with inbreeding were 
unaffected. 

A strictly additive genetic model was used to examine whether 
the infinitesimal model could be approximated by a finite num- 
ber of unlinked loci for five generations, with and without selec- 
tion. In the absence of selection, the expected additive variance 
assuming an infinitesimal model was computed according to 
Van der Werf and De Boer (1990): 

(or2) = ~ tr (QAt) G 2 (5) E 

where A t is the matrix of additive genetic relationships between 
n animals in generation t and Q = ( I -  ~J), where I is an n • n 
identity matrix and J is an n • n matrix in which all elements 
equal 1. With selection, the simulated additive variance obtained 
with the finite-locus model was compared with the simulated 
variance obtained with an infinitesimal model. 

Results and discussion 

Additivity at 64 or 1,600 loci 

Strict ly addi t ive  genetic  models  wi th  64 o r  1,600 loci were  

used to c o m p a r e  the f ini te-locus mode l  wi th  the infini- 

tesimal  model .  F o r  each locus the init ial  f requency  o f  the 

f avourab le  allele was 0.2, 0.5, or  0.8 in different  s imulat-  

ed popula t ions ,  while the genetic  difference a m o n g  

h o m o z y g o t e s  equa l led  2 or  0.4 wi th  64 or  1,600 loci, 

respectively.  Consequen t ly ,  the addi t ive  genetic var iance  

was dependen t  on the initial allelic f requency.  

Resul ts  f r o m  five genera t ions  o f  r a n d o m  ma t ing  be- 

tween 5 r a n d o m l y  chosen males  and  all 20 females are 

given in Table I for  the 64-1oci model .  The  m e a n  s imulat-  

ed addi t ive  effect in each  genera t ion  was close to zero. 

The  var iance  o f  s imula ted  addi t ive  effects, however ,  de- 

cl ined as a result  o f  the es tab l i shment  o f  covar iances  

be tween  animals  and  the increase in average  inbreed ing  

coefficient.  S imula ted  addi t ive  var iances  agreed well  wi th  
expected  addi t ive  var iances  assuming  an inf ini tes imal  

model .  Predic t ions  o f  addi t ive  effects were  empir ical ly  
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Table 1. Mean (#a) and variance of simulated additive effects (or,2), expected additive variance, mean predicted minus simulated 
additive effects (fi-a), and mean frequency of the favourable allele (p) in generations 1, 3, and 5 with random selection and mating, 
averaged over 1,000 replicates for 64 loci, additive gene action, and initial p (Pi) at 0.2, 0.5, and 0.8 (empirical standard error between 
brackets)" 

Pi Generation b #a ~ E (cry) r ~-a p 

0.2 1 --0.01 (0.02) 20.60 (0.15) 20.48 O.Ot (0.02) 0.20 
3 --0.05 (0.05) 19.15 (0.18) 19.07 0.03 (0.04) 0.20 
5 --0.05 (0.07) 18.09 (0.17) 18.12 0.04 (0.04) 0.20 

0.5 1 0.02 (0.03) 32.11 (0.22) 32.00 --0.02 (0.03) 0.50 
3 0.01 (0.06) 29.98 (0.28) 29.80 0.01 (0.05) 0.50 
5 0.12 (0.08) 28.53 (0.26) 28.32 --0.01 (0.05) 0.50 

0.8 1 0.02 (0.02) 20.64 (0.15) 20.48 --0.02 (0.02) 0.80 
3 0.01 (0.05) 19.34 (0.19) 19.07 -0.01 (0.04) 0.80 
5 0.08 (0.07) 18.31 (0.18) 18.12 -0.02 (0.04) 0.80 

a Proportion selected is 25% for males and 100% for females 
b Mean F in generations 1, 3 and 5, is 0.00, 0.03 and 0.08 respectively, independent of initial alMic frequency 
c Expected variance according to equation [5] in text 

Table 2. Mean (#a) and variance of simulated additive effects (cr,2), mean expected additive variance, mean predicted minus simulated 
additive effects (fi-a), and mean frequency of the favourable allele (p) in generations 1, 3, and 5 of phenotypic selection averaged over 
1,000 replicates for 64 loci, additive gene action, and initial p (Pi) at 0.2, 0.5, and 0.8 (empirical standard error between brackets) a 

Pl Generation b #a ~r. 2 E ( ~ )  r gt-a p 

0.2 1 --0.02 (0.02) 20.84 (0.15) 20.40 (0.14) 0.02 (0.02) 0.20 
3 4.85 (0.06) 18.70 (0.18) 16.54 (0.15) --0.04 (0.04) 0.24 
5 9.35 (0.08) 18.35 (0.18) 15.00 (0.14) -0.19 (0.05) 0.27 

0.5 1 0.01 (0.03) 32.23 (0.23) 31.87 (0.23) -0.01 (0.03) 0.50 
3 5.74 (0.06) 25.56 (0.24) 25.85 (0.24) -O.Ol (0.05) 0.54 
5 10.67 (0.08) 22.85 (0.22) 23.44 (0.22) 0.02 (0.05) 0.58 

0.8 1 0.02 (0.02) 20.55 (0.15) 20.40 (0.14) --0.02 (0.02) 0.80 
3 4.46 (0.05) 14.31 (0.14) 16.54 (0.15) -0.03 (0.04) 0.83 
5 7.85 (0.06) 11.78 (0.11) 15.00 (0.14) 0.21 (0.04) 0.86 

a Proportion selected is 25% for males and 50% for females 
b Mean F in generations 1, 3 and 5, is 0.00, 0.04 and 0.11 respectively, independent of initial allelic frequency 
~ Expected variance based on simulation with infinitesimal model 

unbiased. As expected, the average frequency of  the fa- 
vourable allele was unchanged in the absence of  selec- 

tion. 
Phenotypic selection of  5 males and 10 females in 

each generation changed the mean simulated additive 
genetic merit, variance of  simulated additive genetic 
merit, and allelic frequency for both  models with 64 and 
1,600 loci (Tables 2 and 3). Selection increased mean 
additive genetic merit, while additive variance declined 
due to the establishment of  covariances between animals, 
the increase of  inbreeding, and gametic-phase disequi- 
librium. In addit ion,  additive variance changed as a re- 
sult of  changes in allelic frequency. 

Changes in allelic frequency due to selection were 
consistent with the expectations (Crow and Kimura  
1970, p. 229), e.g. both  the expected and the realized 
initial change in average allelic frequency for 64 loci and 
p = 0.5 equalled 5%. As expected, the increase in average 

frequency of  the favourable allele was greater with 64 
than with 1,600 loci. Consequently,  the additive variance 
with 1,600 loci was closer to the additive variance with an 
infinitesimal model  than the additive variance with 64 
loci in later generations. 

However,  for the 64-1oci model  predict ions of  addi- 
tive effects remained empirically unbiased when the ini- 
tial frequency was 0.5, whereas with initial frequencies of  
0.2 or 0.8 selection produced biased (c~ = 0.05) predict ions 
of  additive effects in later generations. This results from 
the fact that  the change of  the additive variance due to 
the change in allelic frequency with selection, which is 
ignored in mixed model  methodology,  is relatively larger 
with extreme than with intermediate initial frequencies 
(Falconer  1989). 

Biases observed with extreme initial frequencies and 
64 loci were reduced when 1,600 loci were considered. 
Increasing the number  of  loci decreased the average 
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Table 3. Mean (#a) and variance of simulated additive effects (a~), mean expected additive variance, mean predicted minus simulated 
additive effects (gt-a), and mean frequency of the favourable allele (p) in generations 1, 3, and 5 of phenotypic selection averaged over 
t,000 replicates for 1,600 loci, additive gene action, and initial p (Pi) at 0.2, 0.5, and 0.8 (empirical standard error between brackets)a 

Pi Generation b /~. Cr~ E (cr. z) ~ fi-a p 

0.2 1 0.01 (0.02) 20.60 (0.15) 20.40 (0.15) --0.01 (0.02) 0.20 
3 4.70 (0.05) 16.65 (0.16) 16.54 (0.15) 0.02 (0.04) 0.21 
5 8.84 (0.07) 15.59 (0.14) 15.00 (0.14) --0.04 (0.04) 0.21 

0.5 1 -0.01 (0.03) 31.87 (0.23) 31.87 (0.23) 0.01 (0.03) 0.50 
3 5.78 (0.07) 25.83 (0.25) 25.85 (0.24) 0.07 (0.05) 0.51 
5 10.86 (0.09) 23.32 (0.22) 23.44 (0.22) 0.03 (0.05) 0.52 

0.8 1 0.05 (0.02) 20.27 (0.15) 20.40 (0.15) -0.05 (0.02) 0.80 
3 4.58 (0.05) 15.94 (0.15) 16.54 (0.15) 0.02 (0.04) 0.81 
5 8.45 (0.07) 14.40 (0.14) 15.00 (0.14) 0.06 (0.04) 0.81 

a Proportion selected is 25% for males and 50% for females 
b Mean F in generations 1, 3 and 5, is 0.00, 0.04 and 0.11 respectively, independent of initial allelic frequency 
c Expected variance based on simulation with infinitesimal model 

Table 4. Mean predicted minus simulated additive and dominance effects (empirical standard error between brackets) and average 
inbreeding level (F) in generations 1, 3, and 5 of random or full-sib mating without selection averaged over J,000 replicates with 
complete dominance and an initial frequency of favourable allele of 0.5" 

Additive effects Dominance effects 

Analysis model b Analysis model 

Mating type Generation [a] [b] [a] [b] F 

Random 1 -0.02 (0.03) -0.02 (0.03) 0.07 (0.02) 0.0t (0.02) 0.00 
3 -0.65 (0.05) 0.02 (0.05) 0.93 (0.03) -0.01 (0.02) 0.03 
5 -1.52 (0.05) -0.02 (0.06) 2.28 (0.03) 0.03 (0.04) 0.08 

Full-sib 1 0.00 (0.03) 0.00 (0.03) 0.16 (0.02) 0.01 (0.02) 0.00 
3 -3.01 (0.05) -0.04 (0.06) 3.90 (0.03) 0.05 (0.04) 0.14 
5 -7.07 (0.07) 0.00 (0.09) 8.84 (0.05) 0.00 (0.09) 0.35 

" Proportion selected is 25% for males and 100% for females 
b Model [a] without and model [b] with regression on inbreeding 

change in allelic frequency due to selection and, as a 
result, the corresponding change of  the additive variance. 
The genetic model with 64 loci will be used to study the 
prediction of  additive and dominance effects in unse- 
lected populations, while both 64- and 1,600-1oci models 
will be considered in selected populations. 

Complete dominance at 64 loci with random selection 

After five generations of  random or full-sib mating be- 
tween 5 males and all 20 females in the absence of  direc- 
tional selection, additive and dominance effects were pre- 
dicted with statistical models (a) and (b) for varying 
initial allelic frequencies (Tables 4 and 5). For  each mat- 
ing strategy and an initial allelic frequency of  0.5, model 
(a) resulted in empirically biased (e = 0.05) predictions of  
additive and dominance effects in generations with in- 
breeding (Table 4). The average underestimation of  addi- 

tire effects, however, was slightly smaller than the aver- 
age overestimation of  dominance effects. Hence, total 
genetic effects were biased upwards. Observed biases for 
additive and dominance effects increased almost linearly 
with the average inbreeding coefficient (F). Inclusion of  
F as covariate in the model resulted in empirically un- 
biased predictions of  additive and dominance effects for 
random and full-sib mating strategies. 

When all loci have two alleles with allelic frequencies 
of  0.5, however, the covariance between additive and 
dominance effects, which is ignored in model (b), is zero. 
This covariance is nonzero if allelic frequencies are differ- 
ent from 0.5 (Harris 1964). Therefore, initial frequencies 
of  0.2 and 0.8 were considered (Table 5). Average in- 
breeding coefficients in these cases were equal to those 
given in Table 4. Ignoring the covariance between addi- 
tive and dominance effects with inbreeding and the 
change in dominance variance due to inbreeding did not 
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Table 5. Mean predicted a minus simulated additive and dominance effects (empirical standard error between brackets) and mean 
inbreeding level (F) in generations 1, 3, and 5 of random or full-sib mating without selection averaged over 1,000 replicates, for 
complete dominance and initial allelic frequency of 0.2 or 0.8 b 

Mating type Generation c 

Additive effects Dominance effects 

Frequency Frequency 

0.2 0.8 0.2 0.8 

Random 1 0.02 (0.04) -0.01 (0.01) 0.00 (0.01) -0.01 (0.01) 
3 0.04 (0.06) -0.01 (0.02) 0.01 (0.02) -0.01 (0.01) 
5 0.06 (0.07) 0.00 (0.02) 0.03 (0.04) -0.01 (0.02) 

Full-sib 1 0.00 (0.04) 0.00 (0.01) 0.00 (0.01) -0.01 (0.01) 
3 0.02 (0.07) 0.00 (0.02) -0.03 (0.04) -0.02 (0.02) 
5 0.09 (0.12) 0.04 (0.03) -0.12 (0.12) -0.06 (0.03) 

a Statistical model [b] with regression on inbreeding 
b Proportion selected is 25% for males and 100% for females 

Table 6. Mean predicted minus simulated average additive and dominance effects (empirical standard error between brackets), mean 
inbreeding level (F), and frequency of favourable allele (p) in generations 1, 3, and 5 of phenotypic selection averaged over 1,000 
replicates, with complete dominance, 64 loci, and an initial p of 0.5 a 

Additive effects Dominance effects 

Analysis model b Analysis model 
Generation [a] [b] [a] [b] F p 

1 -0.01 (0.03) -0.01 (0.03) 0.05 (0.02) -0.01 (0.02) 0.00 
3 -0.68 (0.05) 0.00 (0.05) 0.92 (0.02) 0.01 (0.03) 0.03 
5 -1.52 (0.06) -0.08 (0.06) 2.34 (0.03) 0.10 (0.04) 0.08 

0.50 
0.53 
0.55 

" Proportion selected is 25% for males and 100% for females 
b Statistical model [a] with and model [b] without regression on inbreeding 

significantly bias predictions of  additive and dominance 
effects in unselected populations with inbreeding 
(Table 5). 

Complete dominance at 64 or 1,600 loci with phenotypic 
selection 

After five generations of  random mating between the 
phenotypically 5 best males and all 20 females, additive 
and dominance effects were predicted with statistical 
models (a) and (b). Mean predicted minus simulated ad- 
ditive and dominance effects in generations one, three, 
and five are given in Table 6 for 64 loci and an initial 
allelic frequency of  0.5. For  model (a) the predicted addi- 
tive and dominance effects in generations with inbreed- 
ing were biased (c~=0.05) by about the same amount  as 
with random selection of  males and females. For  model 
(b) and phenotypic selection, predicted dominance ef- 
fects in generation five were slightly biased (c~ = 0.05). 

With a selection of  10 instead of  20 females in each 
generation and 64 unlinked biallelic loci, model (b) re- 

sulted in significantly biased (e = 0.05) prediction of  both 
additive and dominance effects in generations with in- 
breeding (Table 7). Observed biases might be due to ig- 
noring the covariance between additive and dominance 
effects and the change in dominance variance due to 
inbreeding and/or to ignoring changes in allelic frequen- 
cy in simulated and estimated additive and dominance 
effects. 

With 1,600 unlinked, biallelic loci and an initial allelic 
frequency of  0.5, predictions of  additive and dominance 
effects were empirically unbiased. When the initial allelic 
frequency is 0.5, however, and changes in average allelic 
frequency due to selection are small, the covariance be- 
tween additive and dominance effects is negligible. The 
absolute covariance is largest with an initial allelic fre- 
quency around 0.2 (Harris 1964). Increasing the number 
of  loci with an initial frequency of  0.2 also decreased 
observed biases considerably, although predicted domi- 
nance effects remained slightly higher than correspond- 
ing simulated effects in generation five. Increasing the 
number of  loci decreased the average change in allelic 
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Table 7. Mean predicteda minus simulated additive and dominance effects (empirical standard error between brackets) and mean 
frequency of favourable allele (p) in generations 1, 3, and 5 of phenotypic selection averaged over 1,000 replicates, with complete 
dominance and 64 or 1,600 loci  b 

64 loci 1,600 loci 

Generation ~ Additive Dominance p Additive Dominance p 

Initial p is 0.2 

1 0.04 (0.04) 0.01 (0.01) 0.20 -0.01 (0.04) -0.01 (0.01) 0.20 
3 -0.18 (0.07) 0.16 (0.03) 0.24 0.01 (0.06) -0.02 (0.03) 0.21 
5 -0.70 (0.08) 0.78 (0.06) 0.27 -0.04 (0.08) 0.13 (0.05) 0.21 

Initial p is 0.5 

1 -0.01 (0.03) 0.00 (0.02) 0.50 0.01 (0.03) -0.03 (0.02) 0.50 
3 -0.13 (0.05) 0.14 (0.03) 0.54 0.01 (0.05) 0.02 (0.03) 0.51 
5 -0.21 (0.06) 0.34 (0.05) 0.58 0.01 (0.06) 0.02 (0.04) 0.51 

" Statistical model [b] with regression on inbreeding 
b Proportion selected is 25% for males and 50% for females 
~ Mean F in generations 1, 3, and 5 is 0.00, 0.04, and 0.11, respectively, independent of the allelic frequency 

frequency due to selection, while additive and dominance 
covariances were unaffected. Moreover, it reduced possi- 
ble skewness of  the genetic distribution (M/iki-Tanila and 
Kennedy 1986). Consequently, ignoring both the covari- 
ance between additive and dominance effects, and the 
change in dominance variance due to inbreeding did not 
significantly bias predictions of  additive and dominance 
effects in selected populations with inbreeding. Observed 
biases with selection were mostly due to ignoring alMic 
frequency changes in simulated and estimated additive 
and dominance effects. 

Uimari and Kennedy (1990) also concluded that in- 
cluding inbreeding as a covariate in the model of  analysis 
resulted in empirically unbiased predictions of  additive 
and dominance effects in selected and unselected popula- 
tions with inbreeding. The maximum average inbreeding 
coefficient in their simulation, however, equalled 0.08, 
which is much lower than the maximum of 0.35 in the 
present study. They did not observe significant bias in 
selected populations due to instability of  allelic frequen- 
cies because only males were selected in each generation 
and the number of  replicates was smaller. 

Neglecting the effect of  inbreeding on genetic covari- 
ances associated with dominance, however, might result 
in considerable over- or underestimation of  individual 
additive and dominance effects in each generation, al- 
though predictions are on average unbiased. A compari- 
son of  the accuracies of  the prediction of  additive and 
dominance effects obtained with the approximate meth- 
od (Kennedy et al. 1988) and the exact method (Smith 
and M/iki-Tanila 1990) will give information on the pre- 
diction error variance of  additive and dominance effects. 

Table 8. Theoretical and mean predicted regression coefficients 
(empirical standard error between brackets) obtained with 
statistical model with regression on inbreeding in selected and 
unselected populations for varying initial allelic frequency Pi 
and 64 loci 

No selection 

Theore- Random Full-sib 
Pi tical b" mating mating Selection 

0.2 -20.48 -20.09 (0.49) -20.67 (0.28) -23.80 (0.51) 
0.5 -32.00 -31.43 (0.39) -31.98 (0.24) -31.18 (0.40) 
0.8 -20.48 -20.10 (0.17) -20.65 (0.12) -15.31 (0.15) 

a Theoretical value of regression coefficient b according to 
equation [3] 

Estimation of and theoretical value of the average effect 
of inbreeding 

Mean predicted regression coefficients obtained with 
statistical model (b) are given in Table 8 for populations 
with and without selection, varying initial allelic frequen- 
cy, and 64 loci. In addition, the theoretical value of  the 
regression coefficient in the absence of  selection is given, 
which is computed according to equation (3). Estimated 
regression coefficients obtained with model (b) corre- 
sponded well with theoretical coefficients in the absence 
of  selection. With selection, however, equation (3) can 
not be used to determine the theoretical value of  the 
regression coefficient because the population is neither in 
Hardy-Weinberg (Falconer 1989) nor  in gametic-phase 
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equilibrium (Bulmer 1980). As a result of  selection 
against the unfavourable homozygote,  the frequency of  
this genotype will decrease. Therefore, the estimated re- 
gression coefficient will decrease when the initial frequen- 
cy of  the favourable allele is smaller than 0.5 and increase 
when it is larger than 0.5, as can be seen in Table 8. 

Simulation of dominance with the infinitesimal model 

Present and previous simulations (Uimari and Kennedy 
1990) of  populations with additive and dominance gene 
action and inbreeding have used finite-locus (64 or 1,600 
loci) models. In the absence of  inbreeding, recurrence 
equations relating offspring genetic merits to parental 
values exist, and these allow the simulation of  additive 
and dominance effects with the infinitesimal model. An 
individual's additive genetic effect is simulated as the 
average of  it's parental values plus Mendelian sampling, 
while an individual's dominance effect is a function of  it's 
sire-dam combination effect plus Mendelian sampling 
(Hoeschele and VanRaden 1991). Unlike a finite-locus 
model, the infinitesimal model does not require assump- 
tions on the number of  loci, the number of  alleles per 
locus and corresponding alMic frequencies, and the ge- 
netic values of  all possible genotypes at a locus. However, 
required recurrence equations to simulate additive and 
dominance effects in populations with inbreeding are 
currently not available. 

Results indicate that including the average effect of  
inbreeding on the mean and ignoring the effect of  in- 
breeding on genetic covariances associated with domi- 
nance gave empirically unbiased predictions of  additive 
and dominance effects in selected and unselected popula- 

tions with inbreeding. This concept might be used to 
approximate the simulation of  additive and dominance 
effects with an infinitesimal model. An  individual's dom- 
inance effect ignoring inbreeding (dl) was simulated as 
it's sire-dam combination effect plus Mendelian sam- 
pling, where a sire-dam combination effect is a function 
of  combination effects of  the sire with the parents of  the 
dam, the dam with the parent of  the sire, and among 
parents combination effects (Hoeschele and VanRaden 
1991). To simulate the total dominance effect (d*) of  an 
individual (equation (1)) the average effect of  inbreeding 
on the mean is required. Given the underlying genetic 
model, the value of  the regression of  phenotype on in- 
breeding can be computed when changes in alMic fre- 
quency due to selection are ignored. 

To compare both approaches of  simulating domi- 
nance effects in populations with inbreeding, we simu- 
lated five generations of  full-sib mating between 5 males 
and all 20 females with a finite (64 loci) and an infinites- 
imal model. Mean and variances of  simulated additive 
and dominance genetic effects for an initial allelic fre- 
quency of  0.5 are given in Table 9. Mean additive and 
dominance genetic merit and additive variance agreed 
well in both simulations. As expected, mean additive 
genetic merit was close to zero in the absence of  selection, 
while mean dominance effect declined linearly with the 
inbreeding coefficient. Reduction of  the additive vari- 
ance was due to the establishment of  covariances be- 
tween individuals and the increase in average inbreeding 
coefficient. In the finite-locus model, inbreeding de- 
creased dominance variance while variation in inbreed- 
ing coefficient resulted in an increase in dominance vari- 
ance. The infinitesimal model ignores changes of  

Table 9. Mean additive (#.) and dominance effects (/~d), variances (cry, a2), and the covariance (a.d) simulated with the finite-locus 
model or the infinitesimal model for full-sib mating averaged over 1,000 replicates (empirical standard error between brackets) ~ 

Generation b /~. #d a 2 a~ crad 

Simulation with finite-locus (64) model 

1 0.00 (0.03) -0.01 (0.02) 32.16 (0.23) 16.00 (0.12) -0.06 (0.12) 
2 0.05 (0.06) 0.00 (0.02) 30.35 (0.29) 15.94 (0.12) -0.07 (0.12) 
3 0.06 (0.09) -4.45 (0.03) 29.31 (0.32) 21.58 (0.15) 0.20 (0.15) 
4 -0.04 (0.13) -7.86 (0.04) 25.19 (0.29) 18.88 (0.14) 0.10 (0.13) 
5 -0.07 (0.15) -11.25 (0.05) 22.55 (0.25) 16.91 (0.14) 0.18 (0.13) 

Simulation with infinitesimal model 

1 -0.05 (0.03) 0.01 (0.02) 31.85 (0.23) 16.13 (0.12) 0.01 (0.11) 
2 -O.tO (0.06) 0.02 (0.02) 29.95 (0.29) 16.00 (0.12) -0.06 (0.12) 
3 -0.03 (0.09) -4.38 (0.03) 28.82 (0.30) 22.18 (0.16) 0.01 (0.14) 
4 -0.04 (0.13) -7.84 (0.03) 25.47 (0.29) 20.68 (0.15) -0.09 (0.14) 
5 0.04 (0.15) -11.22 (0.03) 22.17 (0.24) 20.51 (0.16) -0.04 (0.13) 

a Proportion selected is 25% for males and 100% for females 
b Mean F in generations 1, 2, 3, 4, and 5 was 0.00, 0.00, 0.14, 0.25, and 0.35, respectively, in both the finite-locus model and the 
infinitesimal model 
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dominance variance due to inbreeding. Consequently, 
with an initial allelic frequency of  0.5 simulated domi- 
nance variance was too high in later generations, while 
the average dominance effect was correctly simulated. In 
addition, the infinitesimal model ignores the covariance 
between additive and dominance effects with inbreeding. 
This covariance is, however, zero when the initial allelic 
frequency is 0.5 (Table 9). 

Thus, simulation of  additive and dominance effects 
with the approximate infinitesimal model accounts for 
the average effect of  inbreeding on the mean, while ignor- 
ing its effect on genetic covariances associated with dom- 
inance. Assumptions on the actual number of  loci and 
alleles, corresponding allelic frequencies, and genetic val- 
ues of  genotypes possible at each locus, however, are not 
required. 

Conclusions 

A statistical model containing individual additive and 
dominance effects, but ignoring changes in mean and 
genetic covariances associated with dominance due to 
inbreeding, resulted in significantly biased predictions of  
both effects. Bias increased almost linearly with the in- 
breeding coefficient. 

A statistical model accounting for the average effect 
of  inbreeding on the mean, while ignoring its effects on 
genetic covariances associated with dominance, resulted 
in empirically unbiased predictions of  additive and dom- 
inance effects in selected and unselected populations with 
inbreeding for varying initial alMic frequencies at 64 or 
1,600 unlinked, biallelic loci. 
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